### Warm Season Drought Development over North America: The Role of Stationary Rossby Waves

Hailan Wang<sup>12</sup>, Siegfried Schubert<sup>1</sup> and Randal Koster<sup>1</sup> NASA/GMAO<sup>1</sup>; SSAI<sup>2</sup>

> NOAA MAPP Webinar February 19, 2016

Wang, Schubert, Koster 2016: The Role of Stationary Rossby Waves in the Development of Drought over North America and Links to Northern Eurasia. AGU Book "Patterns of Climate Extremes: Trends and Mechanisms". In press.

## Motivation

Variance Ratio: SST/Total JJA; Interannual



Estimated from 5 AGCMs (GEOS-5, CCM3, CAM4, GFS, ECHAM5) 60 AMIP ensemble members (12 per model); JJA (1979-2011)

Processes that drive warm season drought over North America:

- 1) Overall weak contribution from SST
  - 1) Summertime mean flow inhibits influences of remote forcings from tropics
- 2) Need to better understand processes other than SST, and explore other potential sources of predictability => stationary Rossby waves

### Leading modes of subseasonal atmospheric circulation variability REOF analysis of summer subseasonal V250mb (MERRA)



Strong guidance by NH mean jets

### Leading modes of subseasonal atmospheric circulation variability



#### Temporal Evolution of Daily Anomalies (MERRA/MERRA\_Land)



Rapid development of drought conditions over North America upon establishment of quasi-stationary circulation anomalies

# A Case Study

- The 20May-15Jun1988 stationary Rossby wave event
  - Processes that led to rapid drought development and their representation in model hindcast
    - · Stationary Rossby wave sources over western Pacific
    - North Pacific mean jet stream
    - Local soil moisture feedback
    - 20May atmospheric and land initial conditions
  - AGCM modeling approach

### U250 JJAClim(1980-2010)



The use of free-running GEOS-5 AGCM is limited by its poor simulation of North Pacific mean jet stream:

- Model jet: weak and disoriented
- Similar biases seen in many other AGCMs

### U250 JJAClim(1980-2010)



### GEOS-5 AGCM regional replay Replay region



constrain model atmosphere to MERRA for limited regions and a subset of basic variables (U,V,T,Q,Ps)

#### U250 Clim: JJA



#### GEOS-5 AGCM regional replay



Constraining model atmosphere to MERRA over E Asia and W Pacific:

- removes most of model bias in north Pacific mean jet;
- 2) uses observed wave sources in the replay region

## AGCM Experiments

| Experiments | Replay region       | Replay<br>variables | Atmospheric and land initial conditions                                                           | Land<br>feedback | Processes |
|-------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------|------------------|-----------|
| A           | N/A                 | N/A                 | Control: 21z, 20 May of 1980-2010  Anomaly: 21z, 20 May 1988 plus small atmospheric perturbations | Yes              | 1         |
| B1          | E Asia<br>W Pacific | U,V,T,Q,Ps          | Same as A1                                                                                        | Yes              | 1,2,3,4   |
| В2          |                     |                     | Control: 21z, 2 May of 1980-2010  Anomaly: 21z, 2 May of 1980-2009                                | Yes              | 2,3,4     |
| В3          |                     |                     | Same as B2                                                                                        | No               | 2,4       |
| B4          |                     | U,V                 | Same as B2                                                                                        | Yes              | 2,3       |

1: 21z 20 May 1988 atmospheric and land initial conditions

2: observed wave sources over western Pacific

3: soil moisture feedback

4: corrected model mean jet over north Pacific

GEOS-5 AGCM; 1deg; Each experiment consists of a control ensemble (31 members) and an anomaly ensemble (30 members).

### Time evolution of V250mb (30N-60N)



20

6

8

-20-12-8-6





Jet guides and constrains wave energy propagation path and speed







### Conclusions

- Summertime stationary Rossby waves played a crucial role in subseasonal development of a number of North American droughts.
- A case study of a stationary Rossby wave event(20May-15Jun1988):
  - Critical importance of NH mean jet stream in guiding and constraining wave energy propagation path and speed
  - Convective anomalies over western Pacific in late May produce a predilection for persistent upper-level high anomalies over central North America about 10 days later, leading to the rapid development of severe dry conditions there
- Stationary Rossby waves can serve as a potential source of predictability for subseasonal development of droughts over North America and northern Eurasia
  - Critical importance to have correct NH jet streams (location, shape, magnitude) in GCMs
  - Future work: Predictability of stationary Rossby waves, including their origins

## Extra Slides

## Leading modes of subseasonal atmospheric circulation variability REOF analysis of summer subseasonal V250mb (MERRA)



Shaded: REOFs; Contour: JJAClim U250 Strong guidance by NH mean jets